

Informe de Cumplimiento Ambiental 2do. Trimestre 2015

Mina Marlin, San Miguel Ixtahuacán, San Marcos

Preparado Para:

Dirección de Gestión Ambiental Ministerio de Ambiente y Recursos Naturales Gobierno de Guatemala

Preparado Por:

Gerencia de Ambiente Mina Marlin Montana Exploradora de Guatemala, S.A.

San Miguel Ixtahuacán, San Marcos, Guatemala.

Julio 2015

-	

Índice de Contenido

Tabla de contenido

INTRODUCCIÓN	6
Calidad de Aire y Niveles de Ruido	7
Metodología	7
Estaciones de muestreo.	7
Parámetros	8
Equipos	8
Laboratorio	10
Resultados y Discusión	10
Datos Meteorológicos	14
Calidad de Agua	16
Agua Superficial	16
Agua Subterránea	18
Descargas	18
Metodología	20
Control y Aseguramiento de Calidad	24
Resultados y Discusión	25
INFORMACIÓN Y AMPLIACIONES SOLICITADAS POR EL MEM	36
Conclusión	39
Anexos	40
Anexo 1 Resultados de laboratorio calidad de aire	40
Anexo 2 Resultados de laboratorio de calidad de agua	40

Índice de Tablas

Tabla 1: Características de las estaciones de medición de calidad de aire	8
Tabla 2: Niveles de PM10 – Estaciones alrededor Mina Marlin	10
Tabla 3: Niveles de ruido – Estaciones alrededor Mina Marlin	12
Tabla 4: Datos meteorológicos	14
Tabla 5: Descripción de los cuerpos superficiales	16
Tabla 6: Estaciones de monitoreo de agua superficial y descarga	19
Tabla 7: Estaciones de monitoreo de agua subterránea	19
Tabla 8: Parámetros analizados	22
Tabla 9: Tiempos de retención y preservación para muestras	24
Tabla 10: Resultados de descargas	28
Tabla 11: Volúmenes de descarga	28
Tabla 12: Resultados de calidad de agua río Tzalá	29
Tabla 13: Resultados de calidad de agua Riachuelo Quivichil y río Cuilco	31
Tabla 14: Resultados de calidad de agua subterránea	34
Tabla 15. Caudales de estaciones de monitoreo	37
Tabla 16. Caudales de descaraa con base mensual	38

Acrónimos y Abreviaturas

MARN: Ministerio de Ambiente y Recursos Naturales de Guatemala

BM: Banco Mundial

IFC: International Finance Corporation

<u>SM</u>: Standard Methods for the Examination of Waste Water

SVL: SVL Analytical.

ECOSISTEMAS: Laboratorio Analítico ECOSISTEMAS

EIA&S: Estudio de Impacto Ambiental y Social

<u>USEPA</u>: United States Environmental Agency

<u>UTM</u>: Universal Transverse Mercator

NAD27: North American Datum 1927

msnm: Metros sobre el nivel del mar

LB: Línea Base

<u>In-Situ</u>: "En el lugar"

Unidades

mg/L: Miligramo sobre litro u.e.: Unidades estándar

μS/cm: Micro-Siemens por centímetro

°C: Grados Celsius

NMP: Número más probable.

LEQ: Promedio Integrado Equivalente

dBA: Decíbeles en la escala A.

PM₁₀: Material particulado menor de 10 micrómetros mm: Milímetros de precipitación o evaporación.

km/h: Kilómetros por hora

mm Hg: Milímetros de mercurio, presión barométrica.

%: Porcentaje de humedad relativa.

Min: Mínimo estadístico Max: Máximo estadístico

m³: metros cúbicos

U Pt-Co: Unidades de color Platino Cobalto. µg/m³. Microgramos sobre metro cúbico.

Fe de errata

Informe de cumplimiento ambiental 1er. Trimestre 2015

En la página no. 28 se indicaba que la fecha de muestreo de SW2 del primer trimestre 2015 es "02/27/2015" lo correcto es "02/14/15".

En la página no. 33 se indicaba que la fecha de muestreo de MW3B del primer trimestre 2015 es "02/14/2015" lo correcto es "03/29/15".

INTRODUCCIÓN

El siguiente informe presenta los resultados de monitoreo obtenidos durante el 2do. trimestre (abril, mayo y junio) del año 2015, para la Mina Marlin de Montana Exploradora de Guatemala, S.A., ubicada en el municipio de San Miguel Ixtahuacán, Departamento de San Marcos. Este informe se presenta a la Dirección de Gestión Ambiental del Ministerio de Ambiente y Recursos Naturales, con el objetivo de dar cumplimiento al requisito VIII de la resolución 779-2003/CRMM/EM de fecha veintinueve de septiembre del año dos mil tres (29/09/2003) en la cual se aprobó el estudio de Evaluación de Impacto Ambiental y Social (EIA&S) de la Mina Marlin I.

El informe contiene el proceso de las actividades realizadas, durante los monitoreos de calidad del aire ambiental en comunidades aledañas; los niveles de presión sonora ambiental, la calidad de agua superficial, subterránea, en ríos, quebradas y condiciones meteorológicas. También se presentan los reportes de laboratorios, identificación de estaciones de muestreo, metodologías, mapas, y cuadros comparativos respecto a los dos trimestres anteriores, análisis y discusión de resultados.

Siguiendo las consideraciones descritas en el Oficio-MARN-DIGARN/828-2011/ECM/vem, se han adjuntado los resultados de los monitoreos con una base mensual de comparación así como consideraciones solicitadas por el Ministerio de Ambiente.

Se concluye que los parámetros analizados están en cumplimiento con los estándares aplicables y en relación a los dos trimestres anteriores para los parámetros más relevantes.

Calidad de Aire y Niveles de Ruido

Contenido de la Sección

Calidad de Aire

Metodología

Parámetros

Equipos

Laboratorio

Resultados y Discusión

Los estándares de comparación de PM10 USEPA, estándares de comparación Ruido Banco Mundial En el presente informe se adjuntan los resultados del monitoreo ambiental de calidad de aire del 2do. trimestre 2015. Los parámetros que se analizan fueron establecidos en el programa de monitoreo ambiental, descrito en el Capítulo 10 del Estudio de Evaluación de Impacto Ambiental y Social (EIA&S) del Proyecto Minero Marlin. Los parámetros evaluados son:

- La calidad del aire ambiental mediante la medición de la concentración de partículas respirables con diámetro menor o igual a 10 micrómetros (PM₁₀), en receptores aledaños a la mina,
- Los niveles de presión sonora ambiental mediante la medición de decibeles en la escala A (dBA) en comunidades aledañas a la mina.

Los equipos y los métodos empleados para realizar los análisis son acordes con las regulaciones de la Agencia de Protección Ambiental de los Estados Unidos de Norte América (USEPA). Los resultados de laboratorio para calidad del aire (PM₁₀), fueron comparados contra el estándar de la USEPA, mientras que los resultados de niveles de presión sonora fueron comparados contra las guías del Banco Mundial y la Línea Base. Los datos de los dos Informes anteriores (4to. trimestre del 2014 y 1er. Trimestre del 2015) están incluidos para comparación.

Metodología

Estaciones de muestreo.

Para establecer la calidad del aire ambiental y niveles de ruido se tomaron mediciones de 6 estaciones de muestreo en los receptores más cercanos a la mina.

Las estaciones están ubicadas en los alrededores de los límites de las propiedades de Montana. En la tabla 1 se presenta la información general de cada estación y en el Mapa 1 se observa la ubicación geográfica de las estaciones.

Dentro del Capítulo 10 Del EIA&S se describen las estaciones de monitoreo para la Mina Marlin, estas son AQ1, AQ2, AQ4, AQ7, AQ9, AQ12.

Tabla 1: Características de las estaciones de medición de calidad de aire

Estación	Elevación	Coorde	nadas UTM	Medición		
				Ruido		Ubicación
AQ1	2,322	638562	1684671	Χ	Χ	Aldea Ágel, al oeste de la mina viento abajo.
AQ2	2,190	640077	1685050	Х	X	Caserío San José Nueva Esperanza al noroeste de la Mina, viento abajo.
AQ4	1,990	641087	1686216	Х	X	Caserío San José Ixcaniche, al norte de la Mina viento abajo
AQ7	2,090	641918	1682175	Х	X	Aldea Carrizal Poj, al sureste de la Mina, viento arriba
AQ9*	1,852	643374	1684306	Χ	Χ	Caserío Tzalem al este de la Mina, viento arriba
AQ12*	1,940	644087	1688404	Χ	X	Caserío Chuena área de influencia por tráfico

Fuente: Gerencia de Ambiente - Montana Exploradora de Guatemala, S.A.

Parámetros

Calidad de aire

 Concentración de material particulado (en microgramos por metro cúbico – μg/m³), con un diámetro aerodinámico menor o igual a 10 micrómetros (PM₁₀);

Niveles de ruido

 Presión sonora - promedio integrado equivalente (LEQ) para 24 horas medido en decibeles en la escala A (dbA).

Equipos

Calidad de aire:

El equipo utilizado para las mediciones de material particulado PM_{10} en el ambiente es el PQ167 Air Sampling System (Sistema de Muestreo de Aire), que satisface los requisitos del Método de Referencia para Muestreo Número RFPS – 1298 – 124; designado en conformidad con 40 CFR Parte 50, Apéndice J ("Referente Method for the Determination of Particulate Matter as PM - 10 in the Atmosphere"), diciembre de 1998 que es el método analítico utilizado. El equipo utilizado cumple con las especificaciones de la USEPA, descrito en el Registro Federal Vol. 63, página 69625, última modificación y actualización del método 01-2009. Los resultados de los pesos de filtros en el Anexo 1.

Niveles de ruido:

Para la realización de las mediciones de niveles de presión sonora se utilizaron los equipos "SoundPro DL Datalogging Sound Level Meter" (Medidores de Niveles de Sonido – Sonómetros) marca Quest Technologies. Los sonómetros cumplen con el estándar internacional IEC 61672-1 "Electroacoustics Sound Level Meters", de la Comisión Electrotécnica Internacional o IEC por sus siglas en inglés. El período de medición de los instrumentos fue de 24 horas continuas, para cada estación de monitoreo.

BGI PQ167 Air Sampling System. Equipo de Monitoreo PM₁₀

Sonómetro SoundPro DL 2900 Quest Technologies

^{*}Las estaciones AQ9 y AQ12 no presentan línea base y se colocan como comparación en áreas fuera de la influencia del proyecto.

Ubicación de las estaciones de Calidad de Aire y Niveles de Ruido

Departamento de Ambiente

Leyenda Estaciones de Calidad de Aire 53 Licencia de explotacion Dirección e intensidad de viento resonante Extensión Meteorológica Mina Martin Son Miguel Istahuscán, Son Marcos Wind Speed Direction (blowing from) Departamento de San Marcos Ubicación del área de estudio 642400 Datos de proyección: Metros 3,500 NAD 1927 UTM Zona 15 fonte Proyeccion: Transverse_Mercator Este falso: 50000.000000 Norre Falso: 0.000000 Meridiano central: -53.00000 Meridiano central: -59.00000 Latitud de origen; 0.000000 2,800 1:15,000 Estaciones de monitoreo: Departamento Ambiental Red Hidrográfica: Mina superficie en base a la topografia actualizada hasta marzo 2,008, Verificación de campo: Departamento ambiental 1 centimetro equivale a 0.2 kilómetros Fecha de realización: Ago 2014. Preparado por José Carlos Quezada

Laboratorio

Para el análisis de PM_{10} se utilizó el Método de Referencia de la EPA para la medición de material particulado menor o igual a 10 micrómetros, 40 CFR Parte 50, Apéndice J ("Referente Method for the Determination of Particulate Matter as PM – 10 in the Atmosphere"), diciembre de 1998.

La ecuación para el análisis gravimétrico de los filtros es la siguiente:

$$\frac{\textit{Peso de muestra } (\textit{mg}) \times 1000}{\textit{Volumen Total de Muestra } (\textit{m}^3)} = \textit{Concentración } (\frac{\textit{microgramos}}{\textit{m}^3})$$

Peso de muestra, es la diferencia entre el peso final y el peso inicial del filtro.

Volumen total de la muestra, es el volumen de aire que pasó a través del filtro en m³.

Filtros de Fibra de Vidrio para PM¹⁰

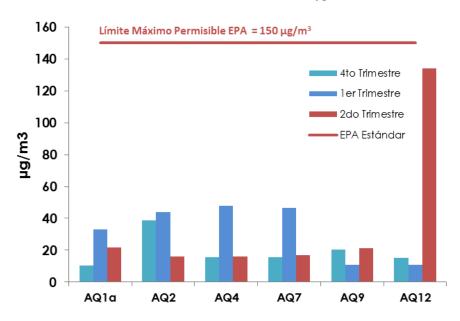
Resultados y Discusión

Calidad de aire

Estación

En la tabla 2 se presentan los resultados obtenidos durante el monitoreo de material particulado (PM₁₀), expresado en microgramos por metro cúbico (µg/m³). En la gráfica 1 se observa que los niveles están por debajo del estándar de la EPA. En la estación AQ12 se identificó un evento puntual en donde actividades de la comunidad influyeron directamente en el resultado, dichas actividades se llevaron a cabo alrededor del punto de monitoreo.

Tabla 2: Niveles de PM₁₀ – Estaciones alrededor Mina Marlin


Concentración PM₁₀ (µg/m³)

			,
	4to trimestre 2014	1er trimestre 2015	2do. trimestre 2015
AQ1a	11	33	22
AQ2	39	44	16
AQ4	16	48	16
AQ7	16	47	17
AQ9	20	11	21
AQ12	15	11	134

junio 2015					$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
DOMINGO	LUNES	MARTES	MIERCOLES	JUEVES	VIERNES	SÁBADO		
31 de may.	1 de jun.	2	3	4	5	6		
		AQ7	AQ9			AQ1a		
			AQ12			AQ4		
7	8	9	10	11	12	13		
14	15	16	17	18	19	20		
		AQ2						
	'esmèsi							
21	22	23	24	25	26	27		
42		200						
28	29	30	1 de jul.	2	3	4		

Fuente: Gerencia de Ambiente - Montana Exploradora de Guatemala, S.A.

Concentración PM₁₀

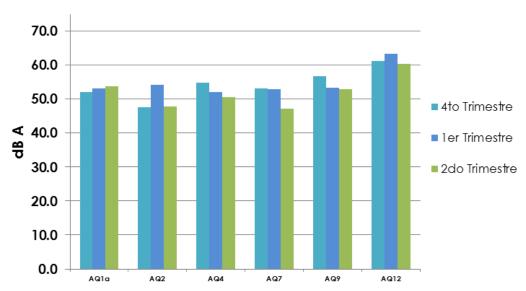
Niveles de ruido

En la tabla 3, se observan los resultados de los niveles de ruido medidos en decibeles escala A (dBA) para el parámetro del promedio integrado equivalente (LEQ). Los resultados son comparados con los obtenidos en los trimestres anteriores y con la línea base de las estaciones en las que aplica. Los resultados muestran que los niveles de presión sonora se mantienen dentro de los límites de la línea base.

Tabla 3: Niveles de ruido – Estaciones alrededor Mina Marlin

Estación	4to trim	nestre 2014	1 er trim	estre 2015	2d	o trimestre 20	15			Línea I	Base*
	Diurno	Nocturno	Diurno	Nocturno	Diurno	Nocturno	24 Horas	Promedio 24 horas	Promedio Diurno	Promedio Nocturno	Máximo
AQ1	53.5	45.9	54.6	47.3	54.0	52.5	53.8	55.2	38	35	69.6
AQ2	46.3	49.4	51.8	51.6	57.0	47.4	47.8	51.8	49	56	66.6
AQ4	55.1	53.9	52.6	51.2	50.1	51.3	50.6	58.5	50	45	76.1
AQ7	54.7	47.0	54.2	49.1	48.5	42.6	47.3	55.4	50	41	61.9
AQ9	57.3	55.2	53.0	54.3	53.5	51.9	53.0	NA	NA	NA	NA
AQ12	62.3	56.8	64.3	60.1	59.0	62.3	60.3	NA	NA	NA	NA

Fuente: Gerencia de Ambiente - Montana Exploradora de Guatemala, S.A.


Las estaciones AQ9 y AQ12 no presentan línea base y se colocan como comparación en áreas fuera de la influencia del proyecto.

NA: No Aplica

UNES de jun.	AQ7 AQ9 AQ12	MIÉRCOLES 3	JUEVES 4	VIERNES 5 AQ1a	sábado 6 AQ4
9 (400 Basses)	AQ7 AQ9			AQ1a	
		10	11	125.120	
				12	13
5	16	17	18	19	20
	AQ2				
2	23	24	25	26	27
9	30	1 de jul.	2	3	4
	2	AQ2	AQ2 23 24	2 23 24 25	AQ2 2 23 24 25 26

^{*}La línea base fue establecida para el período de Julio 2002 hasta marzo de 2004. Para los límites del Banco Mundial (55 dB diurno y 45 dB nocturno) los promedios de línea base en la estaciones AQ1, AQ2, AQ4 y AQ7 fueron mayores a los límites establecidos por lo que se deberán sumar 3 dB al promedio de la línea base como guía de comparación.

Nivel de Presión Sonora - Período 24 hrs

Datos Meteorológicos

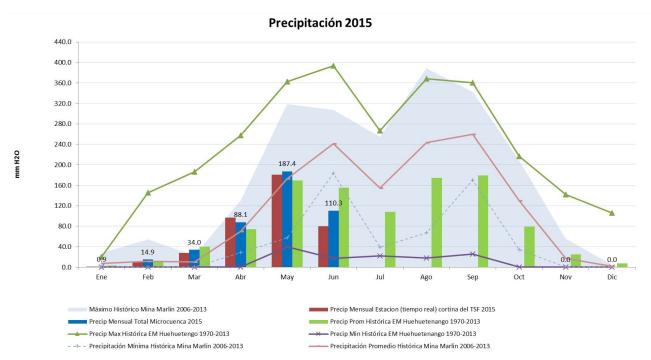
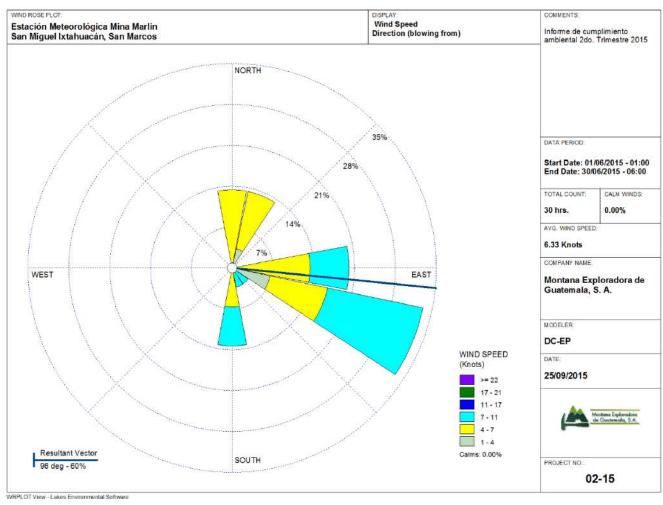

Los datos meteorológicos fueron recopilados por una estación permanente y automática propiedad de Mina Marlin, ubicada al este de la represa de colas. En tabla 4 se presentan los datos meteorológicos recopilados durante los días que se realizaron los monitoreos, se adjuntan la rosa de viento del periodo de medición.

Tabla 4: Datos meteorológicos


	ر (<u></u>	ō	Tempe	ratura an	nbiente	ō	ote	
	(mn	(mn	lative ()		(°C)		féric Hg)	vier /h)	del
Fecha	Precipiłación (mm)	Evaporación (mm)	Humedad relativa Prom. (%)	.0	ō	C	Presión atmosférica Prom. (mm Hg)	Velocidad del viento prom. (km/h)	Dirección del viento (grados)
æ.	ipiła	pord	nedc	Promedio	Máxima	Mínima	ión a om. (sidac rom.	reco
	Prec	Eval	Hun	Pro	W	×	Presi Pro	/eloc	νie Δi
01-jun	0.0	3.0	73.76	18.53	26.12	14.12	583.42	10.61	12
02-jun	1.0	4.2	77.89	18.05	26.12	14.00	583.14	11.49	15
03-jun	8.9	4.7	79.50	17.56	27.81	12.25	582.41	9.61	349
04-jun	12.7	2.0	78.77	18.07	26.75	13.25	583.05	10.91	90
05-jun	11.4	2.0	90.81	16.57	22.43	14.75	583.65	4.94	118
06-jun	7.4	4.0	89.30	17.07	22.81	14.93	583.20	6.16	107
07-jun	0.3	2.6	76.03	18.03	25.68	12.93	583.03	9.01	174
08-jun	0.0	4.0	72.67	18.20	25.18	13.87	582.84	9.81	96
09-jun	14.99	2.8	79.94	18.25	25.93	14.68	582.12	9.34	102
10-jun	5.1	2.4	88.57	17.23	23.06	14.75	582.01	7.76	6
11-jun	0.3	3.2	85.50	17.27	23.93	14.50	582.01	5.15	13
12-jun	3.6	1.2	79.44	17.71	23.18	14.31	582.07	10.02	8
13-jun	5.3	4.4	82.63	17.60	24.50	14.18	582.67	8.77	21
14-jun	0.5	1.0	84.81	17.49	23.93	14.31	582.68	7.77	6
15-jun	2.3	3.6	78.11	18.76	27.75	14.93	582.82	8.66	186
16-jun	1.5	4.6	73.64	19.15	27.00	15.18	582.95	11.07	96
17-jun	4.1	6.0	76.33	19.01	26.31	15.68	583.01	12.51	113
18-jun	0.0	5.2	69.32	18.95	26.62	13.50	583.01	13.71	101
19-jun	0.0	5.0	69.39	19.10	26.43	14.00	583.63	11.93	118
20-jun	0.0	6.0	64.59	19.34	25.12	14.06	584.74	17.87	129
21-jun	0.0	5.0	58.85	19.02	25.75	13.75	584.82	16.26	107
22-jun	0.0	7.0	59.79	18.33	25.00	11.93	584.53	18.90	186
23-jun	0.0	7.0	60.13	17.61	24.37	10.12	584.28	16.84	118
24-jun	0.0	6.0	66.50	17.75	24.87	10.81	584.43	16.33	152
25-jun		6.0	70.06	18.73	26.06	13.50	584.55	15.38	169
26-jun	0.0	5.0	69.33	19.49	26.12	15.25	584.39	15.10	113
27-jun	0.0	7.0	61.97	19.80	28.00	13.81	584.27	15.05	101
28-jun	0.0	4.0	62.12	18.94	27.31	11.62	584.24	11.91	96
29-jun	1.0	3.8	72.69	18.17	25.56	13.75	584.35	15.74	113
30-jun	0.0	3.0	74.09	18.03	25.18	12.68	584.21	13.12	113

Estación Meteorológica Mina Marlin.

Fuente: Gerencia de Ambiente - Montana Exploradora de Guatemala, S.A.

Calidad de Agua

Agua Superficial

Para determinar la calidad del agua superficial se establecieron en el EIA&S, 6 estaciones de monitoreo en los ríos cercanos al área de la mina Marlin, los cuales son el río Tzalá, riachuelo Quivichil y río Cuilco, la descripción y ubicación de estas estaciones se muestra en la tabla 5.

Contenido de la Sección

Δσ	ша	SII	ne	rtı	cial
റട	uu	Ju	Pυ		ciai

Agua Subterranea

Descargas

Metodología

Control Y aseguramiento de Calidad

Resultados y Discusión

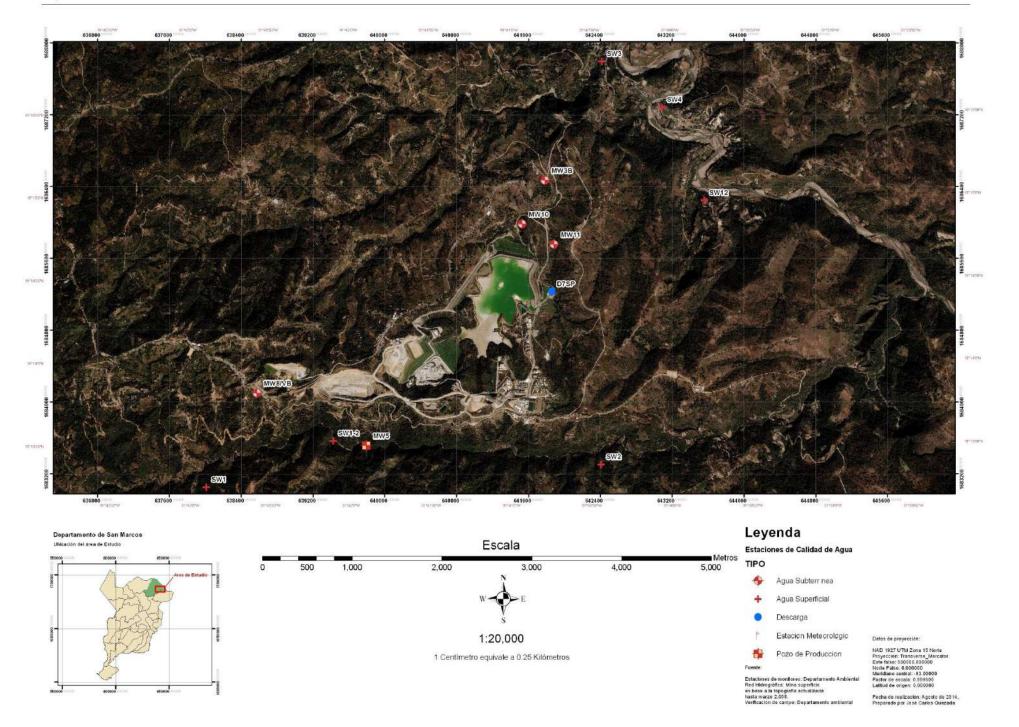

Los cuerpos de agua superficial alrededor de Mina Marlin son 3, Rio Tzalá, Quivichil y Cuilco

Tabla 5: Descripción de los cuerpos superficiales

	Tabla 5: Descripción de la	os cuerpos superficiales
Cuerpo Superficial	Descripción	lmagen
Río Tzalá	El río Tzalá fluye de oeste a este hasta desembocar en el rio Cuilco ubicado al este de la Mina Marlin. El río Tzalá posee un drenaje del tipo dendrítico el cual posee 5 corrientes permanentes, 36 corrientes intermitentes y 50 corrientes efímeras. El área de la cuenca del río Tzalá es de 66.19 Km² y la pendiente de su cauce es de 12%.	
Riachuelo Quivichil	El riachuelo Quivichil se localiza al norte de Mina Marlin. Fluye de oeste a este y desemboca en el Rio Cuilco. Posee 2 corrientes permanentes, 7 intermitentes y 10 efímeras, el área de su cuenca es de 20.34 km2 y el porcentaje de pendiente media del cauce principal es del 7%, su tipo de drenaje es dendiítico.	
Rio Cuilco	El rio Cuilco es el cuerpo receptor de las aguas del rio Tzalá y del riachuelo Quivichil. El rio Cuilco fluye hacia el norte hasta desembocar al rio Grijalva en México.	

Ubicación de las estaciones de monitoreo Calidad de Agua

Departamento de Ambiente

Agua Subterránea

Para evaluar la calidad del agua subterránea en el área de la mina, se establecieron 3 estaciones de monitoreo las cuales consisten en pozos plenamente adaptados para toma muestras por medio de bombas sumergibles, los pozos se identifican con los siguientes códigos PSA3, MW3B, MW10. El pozo de monitoreo MW10 se ha presentado como un comparativo de la zona, actualmente se encuentra en mantenimiento por lo que se adjuntan los resultados de los trimestres anteriores del pozo G11 ubicado a pocos metros del MW10 siendo pozos de monitoreo de la Represa de Colas, esto como comparación hidrogeológica. Los parámetros evaluados son los mismos que se establecieron para agua superficial, exceptuando los metales totales y la DQO.

Descargas

Planta de tratamiento aguas industriales

Siguiendo los requerimientos del Estudio de Impacto Ambiental, y el "Reglamento de las Descargas y Reuso de Aguas Residuales y de la Disposición de Lodos (Acuerdo Gubernativo 236-2006)" del Ministerio de Ambiente y Recursos Naturales, se adjuntan a este informe los resultados del monitoreo de agua de descarga de Mina Marlin. Las aguas de descarga han sido sometidas al proceso de tratamiento de la planta de aguas industriales de Mina Marlin. La estación de monitoreo de este punto tiene el código D7SP. Los parámetros evaluados y las metodologías de muestreo son las indicadas en "Reglamento el de las Descargas y Reuso de Aguas Residuales". Se adjuntan en la tabla 10 los resultados y las guías de comparación para efluentes mineros del Banco Mundial, establecidas en el EIA de la Mina Marlin.

Represa de colas (Spillway)

Debido a los efectos de la época lluviosa se reporta descarga por el sistema spillway, D7SP, siguiendo los requerimientos del "Reglamento de las Descargas y Reuso de Aguas Residuales y de la Disposición de Lodos (Acuerdo Gubernativo 236-2006)" del Ministerio de Ambiente y Recursos Naturales, se adjuntan a este informe los resultados del monitoreo, en la tabla 10. El punto de descarga es único, a través del sistema spillway. La muestra representa todo descarga de Mina Marlin.

Las estaciones de muestreo, coordenadas y descripción se presentan en las siguientes tablas para aguas superficiales, subterráneas y descargas.

Tabla 6: Estaciones de monitoreo de agua superficial y descarga

Descripción de estación	Código	Coorden	adas UTM*	Altitud (msnm)
Río Tzalá				
Aguas arriba hacia el suroeste de la mina	SW1	638090	1683260	2,380
Estación intermedia al sur de la mina	SW1-2	639512	1683493	1,945
Aguas abajo hacia el sureste de la mina	SW2	642235	1683315	1,800
Riachuelo Quivichil				
Estación antes de la confluencia con el río Cuilco	SW3	642349	1687545	1,634
Río Cuilco				
Aguas del río Cuilco antes de confluencia del riachuelo Quivichil	SW4	643107	1687305	1,620
Aguas del río Cuilco después de la confluencia del riachuelo Quivichil	SW5	642777	1688250	1,620
Río Cuilco, cercana al puente "Cuilco", La Vega, Sipacapa arriba de la confluencia del rio Tzalá	SW11	647828	1684576	1671
Río Cuilco después de la confluencia del río Tzalá	SW12	643560	1686247	1624
Descarga				
Efluente de planta de tratamiento Mina Marlin	D7SP	641900	1685219	1883

^{*:} Coordenadas en proyección North American Datum 1927.

Fuente: Gerencia de Ambiente - Montana Exploradora de Guatemala, S.A.

Tabla 7: Estaciones de monitoreo de agua subterránea

Descripción de estación	Código	Coorden	adas UTM*	Altitud (msnm)
Pozo de producción de la Mina	PSA3**	639576	1683902	2,077
Aguas al oeste de la mina, aldea Agel	MW3B	641810	1686466	1,840
Aguas abajo del depósito de colas antes de confluencia con quebrada Seca	MW10+	641520	1685979	1,851
Aguas abajo del depósito de colas antes de confluencia con quebrada Seca	G11	641525	1685989	1,852

^{*} Coordenadas en proyección North American Datum 1927.

Fuente: Departamento de Calidad de Agua, Gerencia de Ambiente - Montana Exploradora de Guatemala, S.A.

^{* *}Pozo PSA3, pozo de producción dentro del mismo sistema del pozo MW5.

⁺ El pozo MW10 se encuentra dañado, el pozo MW3B se encuentra aguas abajo del depósito de colas.

Metodología

La metodología de toma de muestras para análisis y evaluación de los parámetros establecidos en el EIA&S, se rige bajo los procedimientos de la Agencia de Protección Ambiental de los Estados Unidos (USEPA), los lineamientos establecidos en los Métodos Standard para la examinación del Agua (Standard Methods) y el "Reglamento de las Descargas y Reuso de Aguas Residuales y de la Disposición de Lodos" (Acuerdo Gubernativo 236-2006) del Ministerio de Ambiente y Recursos Naturales.

Toma y colección de muestras.

Afluentes Metodología Utilizada Aguas superficiales Muestreo puntual discreto de toma simple Aguas subterráneas Muestreo discreto pasivo (método de difusión pasiva) Muestreo de micro purgado de flujo laminar. Muestreo de abatimiento y recuperación de 3 volúmenes equivalentes. (EPA) **Efluentes** Muestreo compuesto secuencial de 12 horas, 4 muestras Descarga planta en un intervalo de 3 horas. Según Acuerdo Gubernativo tratamiento No. 236-2006. Descarga represa de Muestreo compuesto proporcional a las horas de

Las metodologías de colecta de muestra y análisis son las descritas por la USEPA, Banco Mundial y Standard Methods

Aguas superficiales:

colas

La toma de muestras en aguas superficiales se realiza de forma simple, discreta y puntual. Dentro de los márgenes de las corrientes de los ríos analizados la toma se realiza para los ríos Tzalá y Quivichil en las regiones de corriente localizada, es decir donde el flujo es mayormente representativo. Para el río Cuilco las muestras se toman en los puntos donde la corriente es predominante, aunque por razones de seguridad durante la época lluviosa las corrientes de este río son fuertes y durante este periodo la muestra se toma en los puntos más cercanos al centro de la corriente.

descarga. Dependiendo del flujo de descarga el volumen de muestra por hora es ajustado. Según

Acuerdo Gubernativo No. 236-2006.

<u>Descargas:</u> Para los efluentes de descarga la colecta de la muestra es realizada de modo compuesto utilizando un muestreador automático programable (Teledyne Isco). Para las descargas de la planta de tratamiento de aguas industriales, el muestreo compuesto se realiza de forma secuencial con volumen fijo, debido a que el volumen de descarga es constante y fijo. Para las descargas provenientes del spillway desde la represa de colas el muestreo compuesto se realiza a volumen proporcional al flujo, debido a que este tipo de descargas se realizan en función de eventos de alta intensidad de precipitación que regulan el flujo de descarga en el tiempo que dura el evento. El equipo se coloca en el disipador.

Aguas subterráneas

Las metodologías para la toma y colección de muestras para análisis de agua subterránea están divididas en 3 formas, en función del tipo de agua subterránea o pozo de monitoreo a evaluar.

<u>Pozos de producción</u>: Para este tipo de pozo se utiliza la metodología de abatimiento y recuperación de 3 volúmenes equivalentes¹ siguiendo la metodología de la USEPA. Generalmente el pozo de producción de Marlin se mantiene en bombeo, por lo que el abatimiento no es necesario debido a que el flujo de agua es constante y la muestra colectada es representativa por tener una recarga satisfactoria. Pozos que utilizan esta metodología son PSA3.

<u>Pozos de monitoreo de baja recarga</u>: Para estos tipos de pozos y sistemas en los cuales no se puede aplicar el método de los 3 volúmenes equivalentes debido a que el flujo de recarga es bajo se utilizan muestreadores pasivos de difusión (Hydrasleeves), estos son introducidos en los pozos de monitoreo por un tiempo de 24 horas dejando que el flujo del acuífero atraviese la membrana del colector y luego el volumen de análisis es retirado. Pozos que utilizan esta metodología MW10, MW11.

Pozos de monitoreo de recarga media: Para este tipo de pozo se utiliza la metodología de micropurgado de flujo laminar. Este método consiste en realizar un bombeo de bajo flujo introduciendo una bomba dedicada a la altura media de las rejillas de infiltración. El objetivo de este método es bombear el agua al mismo régimen de recarga del pozo manteniendo el nivel dinámico del pozo. La colecta de muestra se realiza hasta que los parámetros pH, conductividad, oxígeno disuelto no muestran variaciones mayores al 5% entre lecturas cada minuto. Pozos que utilizan esta metodología son MW3B, G11.

Parámetros analizados

Dentro de los parámetros considerados para el análisis de calidad de agua se encuentran los fisicoquímicos (In-Situ), fisicoquímicos (laboratorio) y química clásica, aniones, agregados orgánicos, nutrientes, metales², y parámetros microbiológicos. La lista de estos parámetros, así como su descripción y método analítico se enlistan en la tabla 8.

Los perfiles analíticos empleados se dividen en 3 grupos:

¹ Volumen equivalente: el volumen de la columna de agua, medido desde del fondo del pozo hasta el nivel donde se encuentra el agua. Fuente USEPA.

 $^{^2}$ Metales: Listado de metales evaluados por el método ICP. Divididos en dos fracciones Totales y Disueltos. Fracción **Total**: representa la totalidad de elementos detectados en la muestra. Fracción **Disueltos:** Representan los metales que se presentan en partículas o configuraciones de diámetro menor de 0.45 μm , filtrados en el campo.

Tabla 8: Parámetros analizados

Análisis	Método	Descripción
Fisicoquímicos (In-Situ)		
рН	(Instrumental)	El potencial hidrógeno medido en el campo a la temperatura de la muestra. El rango de 0 hasta 14 unidades estándar, con dos cifras decimales estabilizadas durante un periodo de 5 minutos. La medición es realizada por medio de un potenciómetro de campo debidamente calibrado a 3 puntos 4.00, 7.00 y 10.00 a 25 °C.
Temperatura	(Instrumental)	Temperatura del agua del cuerpo estabilizada a 5 minutos, medida con una termocopla o termopar con rango de -20°C hasta 50 °C con dos cifras decimales.
Oxígeno disuelto	(Instrumental)	mg/L de oxígeno disuelto en 1 L de agua. Se realiza por medio de electrodo de celda óptico Clarck o poligráfica. Rango de medición de 0 hasta 10 mg/L con dos cifras significativas decimales. La calibración debe realizarse con corrección de la presión barométrica del lugar de medición para calcular la saturación.
Conductividad específica	(Instrumental)	Inverso de la resistividad a la corriente. Se realiza por medio de celda de conductividad, con rango de 10 hasta 10,000 mS/cm. Se reporta como específica a corrección de 25 °C. No confundir con conductividad "actual" o sin corrección.
Alcalinidad	Standard Methods 2320 B	"Titulación y colorimetría para carbonatos, bicarbonatos, hidróxidos y alcalinidad Total"
Demanda química de oxígeno	Agencia de Protección Ambiental de los Estados Unidos, método 410.4	"Determinación de la demanda química de oxígeno semi-automática"
Sólidos disueltos totales	Standard Methods SM 2540 C	"Sólidos disueltos secados a 180°C"
Sólidos suspendidos totales	Standard Methods SM 2540 D.	"Sólidos suspendidos secados a 105°C"
Sólidos totales	Standard Methods SM 2540 B	"Sólidos totales secados a 105°C"
Aniones		
Cloruros, fluoruros, sulfatos	Agencia de Protección Ambiental de los Estados Unidos, método 300.0	"Determinación de iones inorgánicos por cromatografía de Iones"
Sulfuros	Standard Methods SM 4500-S-F	"Determinación de sulfuros disueltos"
Cianuro Total, WAD y Libre	Agencia de Protección Ambiental de los Estados Unidos, método 335.4 Standard Methods SM 4500-CN-I.	Determinación de cianuro total por colorimetría semi-automatizada". "Determinación de cianuro débil y disociable por destilación y colorimetría."

Análisis	Método	Descripción
	ASTM D7237	Determinación de cianuro libre por análisis de
		inyección de flujo"
Agregados Orgánicos		
Grasas y aceites	EPA 1664°	Grasas y aceites límite de detección 1 mg/L
Hidrocarburos totales	EPA 8015Bmod	Diesel y Lube Oil
Nutrientes		
Nitrógeno de amonio	Agencia de Protección	"Determinación de nitrógeno de amonio por
	Ambiental de los Estados	colorimetría semi-automatizada".
	Unidos, método 350.1	
Nitrógeno Kjeldahl	Agencia de Protección	"Determinación de Nitrógeno Kjeldahl por
	Ambiental de los Estados	colorimetría semi-automatizada".
	Unidos, método 351.2	
Nitrógeno de Nitritos-	Agencia de Protección	"Determinación de nitrógeno de nitritos-
Nitratos	Ambiental de los Estados	nitratos por colorimetría semi-automatizada".
	Unidos, método 351.2	
	0111000, 11101000 00112	
Metales, cationes, y	Agencia de Protección	"Determinación de metales por
no Metales	Ambiental de los Estados	espectrometría de emisión atómica de
TIO MICIGIOS	Unidos, método 6010B	plasma acoplado inducido ICP".
	orlidos, meiodo oorob	plasma acopiado inauciao ici .
	Para los metales Selenio,	Aluminio, Antimonio, Arsénico, Bario, Berilio,
	Talio, Arsénico, Cadmio,	Boro, Cadmio, Calcio, Cobalto, Cobre,
	Antimonio, el método	Cromo, Estroncio, Fósforo, Hierro, Litio,
	analítico es el EPA 6020.	
	andilico es el era 6020.	Magnesio, Manganeso, Mercurio, Molibdeno,
	Demonstration (1)	Níquel, Plata, Plomo, Potasio, Selenio, Silicio,
	Para mercurio el método	Sodio, Talio, Titanio, Vanadio, Zinc
	analítico es EPA 7470°.	

Fuente: SVL Analytical, ECOSISTEMAS S.A.

Control y Aseguramiento de Calidad

Preservación y manejo de muestras

Las muestras colectadas en el monitoreo de calidad de agua han sido sometidas a un sistema de control y aseguramiento de calidad. Estos controles se desprenden de los lineamientos de la USEPA, Banco Mundial y Standard Methods para la colecta, manejo y preservación de muestras.

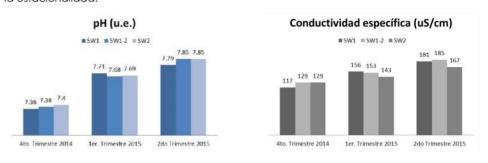
Los recipientes de muestreo utilizados en los monitoreos aquí presentados tienen la certificación de la USEPA Trace Clean grado A, o Quality Asurance QA por sus siglas en inglés, que pertenecen a la metodología "OSWER Directive 9240.0-05°" "Especificaciones y Guías para recipientes libres de contaminantes durante su fabricación". Estos recipientes son de polietileno de alta densidad así como de vidrio ámbar. Así mismo todas las muestras han sido colectadas utilizando guantes estériles desechables de nitrilo, y preservadas como se indica en la tabla de preservación y manejo de muestras, en las cuales se describen los 2 tipos de persevantes, los químicos y de temperatura. Los persevantes químicos están orientados a fijar constituyentes y prevenir reacciones químicas durante el traslado de la muestra, mientras que la preservación por temperatura está orientada a evitar la volatilización de componentes y analitos, para evitar los procesos microbiológicos de degradación, y para

El control y aseguramiento de calidad está orientado a garantizar la integridad y análisis de las muestras.

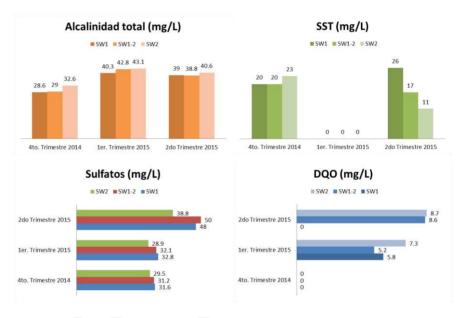
Tabla 9: Tiempos de retención y preservación para muestras

detener o disminuir la actividad y cinética química.

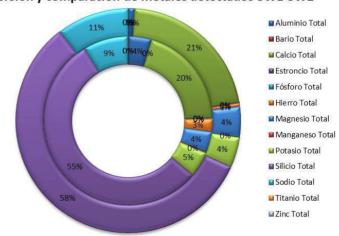
Parámetro	Recipiente y	Preservación y	Tiempo de Retención					
raidifiello	Volumen	manejo	Extracción	Análisis				
Hidrocarburos del Petróleo TPH	Vidrio Ámbar 1 L	Refrigerado 4°C, 2 mL HCl pH <2	7 días	40 días				
Metales	Plástico HDPE 500 mL,	Refrigerado 4°C, 1 mL HNO ₃ pH <2	NA	6 meses				
Mercurio (EPA 7470)	Plástico HDPE 500 mL,	Refrigerado 4°C, 1 mL HNO ₃ pH <2	NA	28 días				
Cianuro Total, WAD y Libre	Plástico HDPE 1L	Refrigerado 4°C, 2 mL NaOH pH >12	NA	14 días				
Aniones (Cloruros, Fluoruros, Sulfatos)	Plástico HDPE 500 mL,	Refrigerado 4°C	NA	28 días				
Sulfuros	Plástico HDPE 1L	Refrigerado 4°C, 2 mL NaOH + Acetato de Zinc al 50%, pH >12	NA	7 días				
Nutrientes	Plástico HDPE 500 mL,	Refrigerado 4°C, 2 mL H ₂ SO ₄ pH <2	NA	28 días				
DQO	Plástico HDPE 500 mL,	Refrigerado 4°C, 2 mL H_2SO_4 pH <2	NA	28 días				
Aceites y Grasas	Vidrio Ámbar 1 L	Refrigerado 4°C, 2 mL HCI pH <2	NA	28 días				
Alcalinidad, SST, SDT, ST, Conductividad,	Plástico HDPE 1L	Refrigerado 4°C	NA	7-14 Días				


Fuente: SM, USEPA 2012.

Resultados y Discusión


Agua superficial

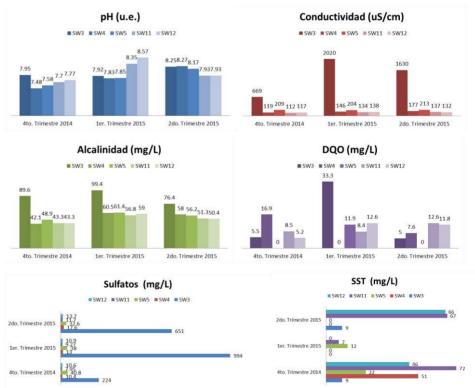
Rio Tzalá


En la tabla 12 se presentan los resultados y línea de base de comparación (LB) para las estaciones SW1, SW1-2, SW2. Todos los parámetros evaluados se reportaron similares a los datos obtenidos durante la LB, y el comportamiento de sus datos guarda relación con los dos trimestres anteriores, aumentan los sólidos suspendidos y los parámetros relacionados a la estacionalidad.

No se observaron cambios significativos entre las estaciones SW1 y SW2.

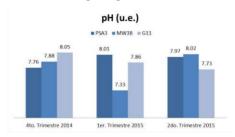
Dispersión y comparación de metales detectados SW1-SW2

Riachuelo Quivichil y río Cuilco

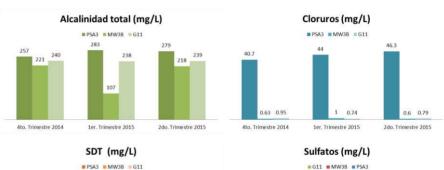

En tabla 13 se muestran los resultados de calidad de agua para las estaciones SW3, SW4, y SW5, se adjuntan como comparación la estación SW11 y SW12 (río Cuilco antes y después de confluencia con el río Tzalá). Todos los parámetros evaluados son similares a los valores encontrados de la línea base y a los trimestres anteriores así como de época seca.

Riachuelo Quivichil

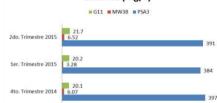
Las condiciones de la quebrada Quivichil se mantienen en relación a la calidad de agua de los trimestres anteriores. El parámetro que ha aumentado es el de sólidos suspendidos. Los sulfatos y conductividad guardan relación con la descarga. Estos parámetros son evaluados constantemente mediante estudios, monitoreos de peces y macroinvertebrados. En la cuenca del riachuelo Quivichil, se llevan controles para que el hábitat de la quebrada permanezca inalterado.

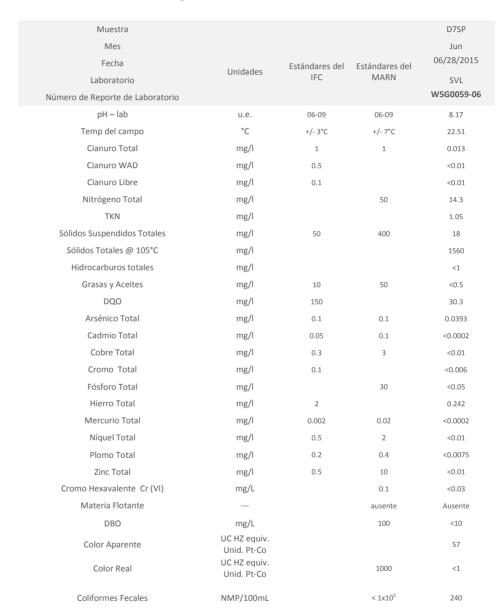

Río Cuilco

No se observan cambios significativos, ni presencia de metales pesados, cianuros, grasas, aceites. No se observan cambios significativos respecto a trimestres anteriores y línea base solamente cambios estacionales producidos por la época lluviosa. Además se evidencia la influencia de las descargas urbanas de los cascos de Sipacapa, Tejutla y otros poblados.



Agua subterránea


La calidad del agua subterránea para las estaciones de muestreo, todos los parámetros evaluados marcan una relación homogénea en función a los trimestres anteriores. En los gráficos siguientes se muestran las tendencias de algunos parámetros indicadores, no se observaron variaciones significativas, solamente cambios y diferencias respecto de las unidades hidrogeológicas del área.



Represa de Colas

Descargas

En la tabla 10 se presentan los resultados de la descarga de la planta de tratamiento de aguas industriales de Mina Marlin y por el sistema spillway. La estación de monitoreo D7SP muestra que todos los parámetros se encuentran en cumplimiento con los límites establecidos por el Reglamento de Descarga del Ministerio de Ambiente (Etapa 1) y con los límites de descarga para efluentes Mineros del Banco Mundial. El flujo de descarga fue de 100 m3/hora.

Tabla 10: Resultados de descargas

Proceso de muestreo compuesto

Fuente: Departamento de Ambiente Mina Marlin 2015.

Ecosistemas reporte 1220-15

Volúmenes de descarga

Los volúmenes de descarga durante los meses de abril, mayo y junio son los siguientes,

Tabla 11: Volúmenes de descarga

	Unidades	Volumen
Planta de Tratamiento	m³	61,116
Sistema spillway		270,658

Departamento de Obra Civil Mina Marlin 2015.

Tabla 12: Resultados de calidad de agua río Tzalá

Fatasián		SW1					SV	W1-2				SW2			
Estación Trimestre	4to, Trimestre 2014	1er. Trimestre 2015	2do Trimestre 2015			4to. Trimestre 2014	1er. Trimestre 2015	2do Trimestre 2015			4to. Trimestre 2014	1er. Trimestre 2015	2do Trimestre 2015		
	11/25/2014	02/27/2015	05/27/2015			11/25/2014	02/27/2015	05/27/2015			11/25/2014	02/14/2015	05/27/2015		
Fecha de muestreo	Nov	Feb	May			Nov	Feb	May			Nov	Feb	May		
Mes	SVL	SVL	SVL			SVL	SVL	SVL			SVL	SVL	SVL		
Laboratorio	W4L0003-01	W5C0099-04	W5F0006-01			W4L0003-03	W5C0099-03	W5F0006-02			W4L0003-02	W5B0287-02	W5F0006-03		
Número de Reporte de Laboratorio				LI	В				LE	3				ı	LB
				Max	Min				Max	Min				Max	Min
pH del campo	7.38	8.07	7.89	8.15	6.63	7.56	7.57	8.07	8.1	6.63	6.82	8.14	8.12	8.4	6.63
pH – lab	7.36	7.71	7.79	7.4	7.3	7.38	7.68	7.85	NA	NA	7.4	7.69	7.85	7.8	7.3
Temp del campo	16.43	16.32	24.65	26.3	11.3	14.24	13.36	20.67	26.3	14.6	13.6	14.31	18.18	26.8	11.3
Conductividad del campo	129.9	134.3	186.1	445	123	132.4	132.8	186.7	703	125	132.8	133.9	172.3	450	123
Conductividad - lab @ 25°C	117	156	181	187	133	129	153	185	NA	NA	129	143	167	178	133
Oxígeno Disuelto del campo	8.15	8.45	-	8.02	3.88	8.71	8.78	-	8.93	4.22	8.92	8.96	-	8.2	3.88
Alcalinidad Total	28.6	40.3	39	134	14	29	42.8	38.8	164	14	32.6	43.1	40.6	148	14
Bicarbonato como CaCO3	28.6	40.3	39	52.5	14	29	42.8	38.8	61.7	14	32.6	43.1	40.6	70	14
Carbonato como CaCO3	<1	<1	<1	ND	ND	<1	<1	<1	ND	ND	<1	<1	<1	ND	ND
Hidróxido como CaCO3	<1	<1	<1	ND	ND	<1	<1	<1	ND	ND	<1	<1	<1	ND	ND
Amonio	<0.03	<0.03	0.04	0.307	0.103	0.046	0.058	0.044	0.103	0.103	<0.03	<0.03	0.044	0.06	0.103
Cloruros	1.47	1.36	1.93	20.6	0.818	1.65	1.5	1.97	20.6	0.818	1.63	1.8	2.05	41	0.818
Fluoruros	0.12	0.127	0.181	0.41	0.41	0.13	0.104	0.19	0.45	0.41	0.13	0.111	0.187	0.38	0.38
Cianuro Total	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND
Cianuro WAD	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND
Cianuro Libre	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND
Nitrógeno Total	0.506	<0.5	<0.5	1.2	1.2	0.515	<0.5	<0.5	1.2	1.2	<0.5	<0.5	<0.5	1.7	1.2
TKN	<0.5	<0.5	<0.5	8	1.7	<0.5	<0.5	<0.5	3.4	3.4	<0.5	<0.5	<0.5	3	8
Nitritos/Nitratos como N	0.401	0.139	0.122	0.319	0.319	0.347	0.144	0.119	ND	ND	0.35	0.117	0.112	0.319	0.319
Sulfatos	31.6	32.8	48	118	13	31.2	32.1	50	118	32.8	29.5	28.9	38.8	126	13
Sulfuro de hidrógeno	<1	<1	<1	ND	ND	<1	<1	<1	ND	ND	<1	<1	<1	ND	ND
Sólidos Disueltos Totales @180°C	115	152	181	875	129	122	149	183	875	150	124	127	214	1208	129
Sólidos Suspendidos Totales	20	<5	26	165	10	20	<5	17	165	14.8	23	<5	11	874	12.4
Sólidos Totales @ 105°C	149	163	205	909	98	154	162	202	909	160	159	147	218	256	98
Hidrocarburos totales	<1	<1	1.8	ND	ND	0	<1	2	ND	ND	<1	<1	<1	ND	ND
Grasas y Aceites	<0.5	<0.5	<0.5	ND	ND	<0.5	<0.5	<0.5	ND	ND	<0.5	<0.5	<0.5	ND	ND
DQO	<5	5.8	<5	46	12	<5	5.2	8.6	46	12	<5	7.3	8.7	80	12
Aluminio Disuelto	0.182	0.1	0.13	9.63	ND	0.173	<0.08	0.14	9.63	0.22	0.1	<0.08	0.21	7.71	0.22
Aluminio Total	2.59	0.4	4.54	18.8	ND	2.5	0.35	4.15	18.8	0.538	2.56	0.66	8.54	20.8	0.489
Antimonio Disuelto	<0.003	<0.003	<0.003	ND	ND	<0.003	<0.003	<0.003	ND	ND	<0.003	<0.003	<0.003	ND	ND
Antimonio Total	<0.003	<0.003	<0.003	0.012	ND	<0.003	<0.003	<0.003	0.032	ND	<0.003	<0.003	<0.003	0.012	ND
Arsénico Disuelto	<0.003	<0.003	<0.003	ND	ND	<0.003	<0.003	<0.003	ND	ND	<0.003	<0.003	<0.003	ND	ND
Arsénico Total	<0.003	<0.003	<0.003	ND	ND	<0.003	<0.003	<0.003	ND	ND	<0.003	<0.003	<0.003	ND	ND
Bario Disuelto	0.0346	0.0356	0.0489	0.178	0.019	0.0367	0.0388	0.0537	0.178	0.019	0.0363	0.0381	0.0617	0.144	0.019
Bario Total	0.0514	0.0406	0.0812	0.253	0.02	0.0533	0.0438	0.0795	0.253	0.02	0.0553	0.0449	0.0997	0.29	0.02
Berillio Disuelto	<0.002	<0.002	<0.002	ND	ND	<0.002	<0.002	<0.002	ND	ND	<0.002	<0.002	<0.002	ND	ND
Berillio Total	<0.002	<0.002	<0.002	ND	ND	<0.002	<0.002	<0.002	0.009	ND	<0.002	<0.002	<0.002	ND	ND
Boro Disuelto	<0.04	<0.04	<0.04	0.299	0.006	<0.04	<0.04	<0.04	0.299	0.007	<0.04	<0.04	<0.04	0.108	0.007
Boro Total	<0.04	<0.04	<0.04	0.267	0.006	<0.04	<0.04	<0.04	0.354	0.006	<0.04	<0.04	<0.04	0.101	0.011
Cadmio Disuelto	<0.0002	<0.0002	<0.0002	ND	ND	<0.0002	<0.0002	<0.0002	ND	ND	<0.0002	<0.0002	<0.0002	ND	ND
Cadmio Total	<0.0002	<0.0002	<0.0002	ND	ND	<0.0002	<0.0002	<0.0002	ND	ND	<0.0002	<0.0002	<0.0002	ND	ND
Calcio Disuelto	13	16.3	19.2	39.1	5.8	13.3	17	19.6	31.3	5.8	13.6	15.6	17.6	33.7	5.8
Calcio Total	13.5	16.5	20.4	46.1	6.11	14.1	17	20.4	49.2	6.11	14.3	16.2	18.6	44.5	6.11
Cobalto Disuelto	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND
Cobalto Total	<0.006	<0.006	<0.006	0.014	ND	<0.006	<0.006	<0.006	0.011	ND	<0.006	<0.006	<0.006	0.012	ND

Estación		SW1					S	W1-2				SW	•		
Trimestre	4to. Trimestre 2014	1er. Trimestre 2015	2do Trimestre 2015			4to. Trimestre 2014	1er. Trimestre 2015	2do Trimestre 2015			4to. Trimestre 2014	1er. Trimestre 2015	2do Trimestre 2015		
	11/25/2014	02/27/2015	05/27/2015			11/25/2014	02/27/2015	05/27/2015			11/25/2014	02/14/2015	05/27/2015		
Fecha de muestreo	Nov	Feb	May			Nov	Feb	May			Nov	Feb	May		
Mes	SVL	SVL	SVL			SVL	SVL	SVL			SVL	SVL	SVL		
Laboratorio	W4L0003-01	W5C0099-04	W5F0006-01			W4L0003-03	W5C0099-03	W5F0006-02			W4L0003-02	W5B0287-02	W5F0006-03		
Número de Reporte de Laboratorio				LE	1				L	.В				L	LB
				Max	Min				Max	Min				Max	Min
Cobre Disuelto	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND
Cobre Total	<0.01	<0.01	<0.01	0.028	0.008	<0.01	<0.01	<0.01	0.028	0.008	<0.01	<0.01	<0.01	0.013	0.008
Cromo Disuelto	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND
Cromo Total	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND
Estroncio Disuelto	0.114	0.138	0.163	0.309	ND	0.117	0.144	0.164	0.317	ND	0.122	0.127	0.153	0.269	ND
Estroncio Total	0.119	0.139	0.176	0.337	ND	0.124	0.142	0.173	0.354	ND	0.129	0.141	0.161	0.399	ND
Fósforo Total	<0.05	<0.05	0.05	0.459	ND	<0.05	< 0.05	<0.05	0.158	ND	<0.05	<0.05	0.05	0.3	ND
Hierro Disuelto	0.067	0.106	0.072	4.87	0.256	0.088	<0.06	0.086	4.87	0.189	<0.06	<0.06	0.152	4.24	0.244
Hierro Total	1.51	0.253	2.54	9.58	0.326	1.43	0.218	2.35	9.58	0.422	1.44	0.354	3.57	11.5	0.288
Litio Disuelto	<0.02	<0.02	<0.02	ND	ND	<0.02	<0.02	<0.02	ND	ND	<0.02	<0.02	<0.02	ND	ND
Litio Total	<0.02	<0.02	<0.02	ND	ND	<0.02	<0.02	<0.02	ND	ND	<0.02	<0.02	<0.02	ND	ND
Magnesio Disuelto	2.77	3.26	3.73	4.9	1.21	2.88	3.36	3.9	5.11	1.21	2.95	3.22	3.76	5.97	1.21
Magnesio Total	2.91	3.26	4.12	8.69	1.26	3.05	3.43	4.24	9.48	1.26	3.19	3.34	4.22	9.19	1.26
Manganeso Disuelto	0.0957	0.0237	0.0921	0.333	0.016	0.0879	0.0082	0.0815	0.333	0.013	0.0578	0.0046	0.0417	0.267	0.013
Manganeso Total	0.131	0.0327	0.147	0.533	0.017	0.123	0.017	0.124	0.578	0.017	0.0934	0.0136	0.0789	0.594	0.017
Mercurio Disuelto	<0.0002	<0.0002	<0.0002	0.002	ND	<0.0002	<0.0002	<0.0002	0.0056	0.0003	<0.0002	<0.0002	<0.0002	0.0006	0.0003
Mercurio Total	<0.0002	<0.0002	<0.0002	0.467	ND	<0.0002	<0.0002	<0.0002	0.233	ND	<0.0002	<0.0002	<0.0002	0.289	ND
Molibdeno Disuelto	<0.008	<0.008	<0.008	ND	ND	<0.008	<0.008	<0.008	ND	ND	<0.008	<0.008	<0.008	ND	ND
Molibdeno Total	<0.008	<0.008	<0.008	ND	ND	<0.008	<0.008	<0.008	ND	ND	<0.008	<0.008	<0.008	ND	ND
Níquel Disuelto	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND
Níquel Total	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND
Plata Disuelta	<0.005	<0.005	<0.005	ND	ND	<0.005	< 0.005	<0.005	ND	ND	<0.005	< 0.005	< 0.005	ND	ND
Plata Total	<0.005	<0.005	<0.005	ND	ND	<0.005	< 0.005	<0.005	ND	ND	< 0.005	< 0.005	< 0.005	0.048	ND
Plomo Disuelto	<0.0075	<0.0075	<0.0075	0.02	ND	<0.0075	<0.0075	< 0.0075	ND	ND	< 0.0075	< 0.0075	<0.0075	ND	ND
Plomo Total	<0.0075	<0.0075	<0.0075	0.022	ND	<0.0075	<0.0075	<0.0075	ND	ND	<0.0075	<0.0075	<0.0075	ND	ND
Potasio Disuelto	2.72	3.25	4.57	5.28	0.96	2.68	3.36	4.21	3.99	0.96	2.75	3.22	3.94	6.17	0.96
Potasio Total	2.83	3.25	4.94	59.9	1.02	2.82	3.29	4.54	59.9	1.02	2.87	3.27	4.18	23.5	1.02
Selenio Disuelto	<0.003	<0.003	<0.003	ND	ND	<0.003	<0.003	<0.003	ND	ND	<0.003	<0.003	<0.003	ND	ND
Selenio Total	<0.005	<0.005	<0.005	ND	ND	<0.005	<0.005	<0.005	ND	ND	<0.005	<0.005	<0.005	ND	ND
Silicio Disuelto	36.9	38.7	39.5	21.3	2.68	37.2	39	38.4	21.3	2.68	37.5	40.7	41	23.2	2.12
Silicio Total	46.8	40.5	56.5	43.6	6.34	47.7	40.1	52.4	43.6	6.34	48.9	43.7	61.9	37.9	6.34
Sodio Disuelto	6.02	7.81	8.32	11.6	1.67	6.09	8.05	8.2	8.6	1.63	6.28	7.39	7.82	418	1.67
Sodio Total	5.97	7.89	8.71	11.8	1.79	6.12	7.87	8.53	12.1	1.79	6.32	7.89	8.09	409	1.79
Talio Disuelto	<0.001	<0.001	<0.001	0.005	ND	<0.001	<0.001	<0.001	0.005	ND	<0.001	<0.001	<0.001	ND	ND
Talio Total	<0.001	<0.001	<0.001	0.003	ND	<0.001	<0.001	<0.001	0.003	ND	<0.001	<0.001	<0.001	0.003	ND
Titanio Disuelto	<0.005	<0.005	<0.005	0.256	ND	<0.005	<0.005	<0.005	0.256	ND	<0.005	<0.005	<0.005	0.233	ND
Titanio Total	0.0664	0.0061	0.102	0.511	ND	0.0653	0.006	0.085	0.511	ND	0.0674	0.0144	0.151	0.522	ND
Vanadio Disuelto	<0.005	<0.005	<0.005	0.011	ND	<0.005	<0.005	<0.005	0.011	ND	<0.005	<0.005	<0.005	0.011	ND
Vanadio Total	<0.005	<0.005	0.0069	0.023	ND	<0.005	<0.005	0.0058	0.023	ND	<0.005	<0.005	0.0084	0.031	ND
Zinc Disuelto	<0.01	<0.01	<0.01	0.053	ND	<0.01	<0.01	<0.01	0.053	ND	<0.01	<0.01	<0.01	0.047	ND
Zinc Total	<0.01	<0.01	0.012	0.059	ND	<0.01	<0.01	0.011	0.062	ND	<0.01	<0.01	0.01	0.056	ND
ND: No detectado															

ND: No detectado

Hidrocarburos Totales: Resultado por debajo del límite de detección de los rangos de diesel, hexanos, y aceites.

¹**Unidades**: pH: u.e., Conductividad uS/cm, metales y demás parámetros: mg/l, Temperatura: °C

²**LB**:: Línea Base Máximos 2005.

Fuente: Gerencia de Ambiente de Mina Marlin-Montana Exploradora de Guatemala, S.A. 2015.

- Equipo de medición de oxígeno en reparación.

PÁGINA 30

Tabla 13: Resultados de calidad de agua Riachuelo Quivichil y río Cuilco

Fecha de muestreo 11/08/2014 02/15/2015 06/28/2015 11/08/2014 02/15/2015 06/28/2015 11/08/2014 02/15/2015 06/28/2015 11/08/2014 02/15/2015 06/28/2015 11/08/2014 02/15/2015 06/28/2015 11/08/2014 02/15/2015 06/28/2015 11/108/2014 02/15/2015 06/28/2015 11/108/2014 02/15/2015 06/28/2015 11/11/2014 02/19/2015 06/28/2015 11/11/2014 02/19/2015 05/28/2015 11/108/2014 02/19/2015 05/28/2015 11/108/2014 02/19/2015 05/28/2015 11/108/2014 02/19/2015 05/28/2015 11/108/2014 02/19/2015 05/28/2015 11/11/2014 02/19/2015 05/28/2015 11/108/2014 02/19/2015 05/28/2015 11/108/2014 02/19/2015 05/28/2015 05/	Trimestre 2015 2015 2015 May
Mes Nov Feb Jun Nov Feb Jun Nov Feb Jun Nov Feb May Nov Feb May <th>b May /L SVL</th>	b May /L SVL
Laboratorio	L SVL
Número de Reporte de Laboratorio W4K0232-03 W5B0287-07 W5G0059-04 W4K0232-02 W5B0287-06 W5B0287-06 W5B0287-06 W5B0287-06 W5B0287-06 W5B0287-05 W5B0287-	
LB LB LB Max Min Max Min Max Min	887-05 W5F0006-08
Max Min Max Min Max Min	
pH del campo 8.27 8.38 8.64 8.85 6.77 7.72 7.94 8.4 8.48 6.77 7.79 7.89 8.5 8.42 7.19 7.86 8.95 8.05 8.08 8.08	9 8.06
pH – lab 7.95 7.92 8.25 8.21 7.61 7.48 7.83 8.27 7.59 7.22 7.58 7.85 8.17 7.55 7.19 7.7 8.35 7.93 7.77 8	7.93
Temp del campo 19.55 14.65 20.24 30.8 18.2 18.16 14.92 20.29 22.9 18.8 17.39 15.07 21.07 23.2 17.6 20.43 19.76 23.12 21.46 20.29	87 23.8
Conductividad del campo 726.9 1941 1501 588 110 127.1 138.2 172.9 193 78 216.4 193.6 202.1 218 87 108.2 125.9 142.1 116.2 13	.2 147.6
Conductividad - lab @ 25°C 669 2020 1630 219 119 119 146 177 114 92 209 204 213 121 92.5 112 134 137 117 1	8 132
Oxígeno Disuelto del campo 8.14 9.65 8.19 7.64 3.25 8.54 9.75 8.48 11.5 3.42 8.67 9.17 8.07 13.22 3.6 7.71 8.82 - 8.09 9	26 -
Alcalinidad Total 89.6 99.4 76.4 170 41 42.1 60.5 58 162 30 48.9 61.4 56.2 170 28 43.3 56.8 51.3 43.3	9 50.4
Bicarbonato como CaCO3 89.6 99.4 76.4 170 41 42.1 60.5 58 87.5 30 48.9 61.4 56.2 90 28 43.3 55.4 51.3 43.3 5	.6 50.4
Carbonato como CaCO3 <1 <1 <1 ND ND <1 <1 ND ND <1 <1 ND ND <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	4 <1
Hidróxido como CaCO3 <1 <1 <1 ND ND <1 <1 ND ND <1 <1 ND ND <1 <1 <1 ND ND <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1 <1
Amonio 0.584 4.16 0.275 0.44 ND 0.048 <0.03 <0.03 0.13 0.13 0.11 <0.03 <0.03 0.61 0.61 0.032 0.045 0.069 <0.03 0.	33 0.058
Cloruros 14 51.4 49.1 16.8 2.35 2.41 3.2 4.15 10.4 1.7 4.09 4.25 4.05 5.87 1.63 2.3 2.18 3.01 2.4 2	25 3.25
Fluoruros 0.31 1 1.06 0.45 0.1 <0.1 0.13 0.205 0.47 0.47 <0.1 0.124 0.155 0.46 0.46 <0.1 <0.1 0.151 <0.1 <0.1	.1 0.181
Cianuro Total <0.01 <0.01 0.014 ND ND <0.01 <0.01 <0.01 ND ND <0.01 <0.01 ND ND <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	01 <0.01
Cianuro WAD <0.01 <0.01 ND ND ND <0.01 <0.01 ND ND <0.01 <0.01 ND ND <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	01 <0.01
Cianuro Libre <0.01 <0.01 ND ND ND <0.01 <0.01 ND ND <0.01 <0.01 ND ND <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	01 <0.01
Nitrógeno Total 4.13 32 10.7 ND ND 1.08 <0.5 <0.5 1.3 1.3 1.56 1.07 0.7 1.1 ND 1.23 <0.5 1.2 1.07 <	.5 1.2
TKN 0.99 5.24 <0.5 3 2.87 <0.5 <0.5 <0.5 <0.5 3.6 1.26 0.79 <0.5 <0.5 3 1.79 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	.5 <0.5
Nitritos/Nitratos como N 3.88 25.3 18.9 0.2 0.2 0.881 0.225 0.215 0.401 0.401 1.33 0.85 0.483 0.295 0.295 1.01 0.266 0.913 0.877 0.	83 0.803
Sulfatos 224 994 651 97.4 8 10.4 13 17.6 15.8 7.7 40.8 38 32.6 14.7 6.9 7.95 9.27 11.7 10.6 1	.9 13.7
Sulfuro de hidrógeno <1 <1 <1 ND ND <1 <1 <1 ND ND <1 <1 <1 ND ND <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1 <1
Sólidos Disueltos 413 1620 1180 587 120 147 126 137 245 95 197 152 149 395 55 135 118 174 137 1	0 186
Sólidos Suspendidos 9 <5 9 158 5.33 51 <5 <5 1090 6.5 22 12 <5 1490 7.5 72 7 67 46	5 66
Sólidos Totales 548 1790 1250 340 170 205 143 150 1335 119 243 192 175 1808 55 228 128 239 198 1	4 251
Hidrocarburos totales <1 <1 <1 ND ND <1 <1 <1 ND ND <1 <1 <1 1.8 ND ND <1 <1 1.1 <1 <1	1 <1
Grasas y Aceites <0.5 <0.5 <0.5 6.16 ND <0.5 <0.5 ND ND <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	.5 <0.5
DQO 5.5 33.3 5 34 ND 16.9 <5 7.6 239 14 <5 11.9 <5 165 10 8.5 8.4 12.6 5.2 1.	.6 11.8
Aluminio Disuelto <0.08 <0.08 <0.08 0.789 0.689 <0.08 <0.08 <0.08 <0.08 <0.08 0.789 0.689 <0.08 <0.08 <0.08 0.118 <0.08 <0.08 <0.08 0.118 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08	0.33
Aluminio Total 3.86 <0.08 0.32 32.3 ND 6.43 0.37 0.63 35 ND 6.06 1 0.72 44.6 0.016 9.87 0.34 10.9 7.92 0	29 12.9
Antimonio Disuelto 0.00354 0.0184 0.00815 ND ND <0.003 <0.003 ND ND <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.0	<0.003
Antimonio Total 0.00336 0.0159 0.00857 ND ND <0.003 <0.003 <0.003 ND ND <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003	<0.003

Estación		sv	V3				SI	W4				sv	V5			SW11			SW12	
Trimestre	4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015			4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015			4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015		4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015	4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015
Fecha de muestreo	11/08/2014	02/15/2015	06/28/2015			11/08/2014	02/15/2015	06/28/2015			11/08/2014	02/15/2015	06/28/2015		11/11/2014	02/19/2015	05/28/2015	11/11/2014	02/19/2015	05/28/2015
Mes	Nov	Feb	Jun			Nov	Feb	Jun			Nov	Feb	Jun		Nov	Feb	May	Nov	Feb	May
Laboratorio	SVL	SVL	SVL			SVL	SVL	SVL			SVL	SVL	SVL		SVL	SVL	SVL	SVL	SVL	SVL
Número de Reporte de Laboratorio	W4K0232-03	W5B0287-07	W5G0059-04			W4K0232-02	W5B0287-06	W5G0059-05			W4K0232-01	W5B0287-05	W5G0059-03		W4K0265-01	W5B0387-04	W5F0006-07	W4K0265-02	W5B0387-05	W5F0006-08
				LE					LB					LB						
				Max	Min				Max	Min				Max	1in					
Arsénico Disuelto	0.0039	0.00872	0.0257	0.012	ND	<0.003	<0.003	<0.003	0.006	ND	<0.003	<0.003	<0.003	ND	ND <0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Arsénico Total	0.0037	0.00797	0.0274	0.021	ND	<0.003	<0.003	<0.003	0.006	ND	<0.003	<0.003	<0.003	0.006	ND <0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Bario Disuelto	0.123	0.0852	0.0828	0.218	0.005	0.0366	0.0413	0.0507	0.087	0.017	0.051	0.0442	0.0508	0.058	0.0388	0.0333	0.0527	0.0364	0.0325	0.0631
Bario Total	0.139	0.0891	0.0837	0.474	0.065	0.0792	0.0479	0.0595	0.847	0.018	0.0872	0.0546	0.0568	1.1 (0.103	0.0382	0.138	0.0931	0.0381	0.154
Berillio Disuelto	<0.002	<0.002	<0.002	ND	ND	<0.002	<0.002	<0.002	ND	ND	<0.002	<0.002	<0.002	ND	ND <0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Berillio Total	<0.002	<0.002	<0.002	ND	ND	<0.002	<0.002	<0.002	ND	ND	<0.002	<0.002	<0.002	ND	ND <0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boro Disuelto	0.232	1.13	0.858	0.237	ND	<0.04	<0.04	0.053	0.028	ND	0.043	0.047	0.049	0.189	ND <0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Boro Total	0.236	1.26	0.795	0.454	ND	<0.04	<0.04	0.044	0.099	ND	0.043	0.052	0.041	0.232	ND <0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Cadmio Disuelto	<0.0002	0.00022	<0.0002	ND	ND	<0.0002	<0.0002	<0.0002	ND	ND	<0.0002	<0.0002	<0.0002	ND	ND <0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Cadmio Total	<0.0002	<0.0002	<0.0002	0.035	ND	<0.0002	<0.0002	<0.0002	ND	ND	<0.0002	<0.0002	<0.0002	ND	ND <0.0002	<0.0002	0.00025	<0.0002	<0.0002	0.00026
Calcio Disuelto	77.4	228	175	76.4	8	11	13.9	14.3	25.2	4.2	20.6	19.8	18.7	12.1	4 10.6	13.3	12.1	11.1	14	12.6
Calcio Total	77.3	237	180	115	10.4	11.2	14.2	14.7	26.8	3.6	20.5	20	19.4	28.4	.2 10.8	12.4	13.4	11.6	13.2	13.9
Cobalto Disuelto	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND <0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Cobalto Total	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	0.019	014 <0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Cobre Disuelto	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND <0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cobre Total	<0.01	<0.01	<0.01	0.017	800.0	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	0.037	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cromo Disuelto	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	ND	ND <0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Cromo Total	<0.006	<0.006	<0.006	0.012	0.012	<0.006	<0.006	<0.006	ND	ND	<0.006	<0.006	<0.006	0.011	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Estroncio Disuelto	0.902	2.5	2.29	0.921	ND	0.0969	0.108	0.139	0.167	ND	0.207	0.163	0.182	0.123	ID 0.0907	0.0986	0.112	0.0964	0.104	0.118
Estroncio Total	0.92	2.8	2.26	1.14	ND	0.104	0.12	0.135	0.257	ND	0.214	0.182	0.179	0.198	ID 0.0978	0.0918	0.126	0.103	0.0986	0.132
Fósforo Total	<0.05	<0.05	<0.05	0.232	ND	0.054	<0.05	<0.05	1	ND	0.052	<0.05	<0.05	0.395	ID 0.07	< 0.05	0.12	0.078	<0.05	0.12
Hierro Disuelto	<0.06	<0.06	<0.06	0.267	ND	<0.06	<0.06	0.072	1.6	ND	<0.06	<0.06	0.143	ND	ID 0.205	<0.06	<0.06	0.113	<0.06	0.183
Hierro Total	1.41	<0.06	0.209	20.2	ND	2.67	0.243	0.464	23.2	ND	2.48	0.588	0.435	29.8	ID 5.01	0.252	4.85	3.78	0.219	5.46
Litio Disuelto	0.056	0.236	0.267	ND	ND	<0.02	<0.02	<0.02	ND	ND	<0.02	<0.02	<0.02	ND	ND <0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Litio Total	0.062	0.251	0.26	ND	ND	<0.02	<0.02	<0.02	ND	ND	<0.02	<0.02	<0.02	ND	ND <0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Magnesio Disuelto	12.2	28.6	25.2	15.2	2.34	3.05	3.87	3.83	4.42	1.12	4.42	4.62	4.47	3.3	08 3.17	3.86	3.59	3.19	3.82	3.65
Magnesio Total	12.2	28.7	25.4	25.8	3.12	3.21	4	3.9	7.13	1.26	4.44	4.57	4.52	6.93	18 3.31	3.87	4.12	3.38	3.81	4.13
Manganeso Disuelto	0.0102	0.0172	0.038	0.076	0.006	0.0285	0.0376	0.0879	0.062	0.013	0.0233	0.0366	0.045	0.033	0.0303	0.0198	0.0338	0.0379	0.0161	0.0533
Manganeso Total	0.026	0.0185	0.0483	0.524	0.007	0.0714	0.0547	0.104	1.46	0.016	0.0625	0.0788	0.0544	2 (0.087	0.0406	0.152	0.0955	0.038	0.179
Mercurio Disuelto	<0.0002	<0.0002	<0.0002	0.024	ND	<0.0002	<0.0002	<0.0002	0.0007	ND	<0.0002	<0.0002	<0.0002	ND	ND <0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Mercurio Total	<0.0002	<0.0002	<0.0002	0.0374	ND	<0.0002	<0.0002	<0.0002	0.0071	ND	<0.0002	<0.0002	<0.0002	ND	ND <0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molibdeno Disuelto	<0.008	0.127	0.035	0.007	ND	<0.008	<0.008	<0.008	ND	ND	<0.008	<0.008	<0.008	ND	ND <0.008	<0.008	<0.008	<0.008	<0.008	<0.008
Molibdeno Total	0.017	0.142	0.032	0.006	ND	<0.008	<0.008	<0.008	ND	ND	<0.008	<0.008	<0.008	ND	ND <0.008	<0.008	<0.008	<0.008	<0.008	<0.008
Níquel Disuelto	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND <0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Níquel Total	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	0.008	ND <0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Plata Disuelta	<0.005	<0.005	<0.005	ND	ND	<0.005	<0.005	<0.005	ND	ND	<0.005	<0.005	<0.005	ND	ND <0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Estación		S	W3				SI	N4				SV	V 5			SW11			SW12	
Trimestre	4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015			4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015			4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015		4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015	4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015
Fecha de muestreo	11/08/2014	02/15/2015	06/28/2015			11/08/2014	02/15/2015	06/28/2015			11/08/2014	02/15/2015	06/28/2015		11/11/2014	02/19/2015	05/28/2015	11/11/2014	02/19/2015	05/28/2015
Mes	Nov	Feb	Jun			Nov	Feb	Jun			Nov	Feb	Jun		Nov	Feb	May	Nov	Feb	May
Laboratorio	SVL	SVL	SVL			SVL	SVL	SVL			SVL	SVL	SVL		SVL	SVL	SVL	SVL	SVL	SVL
Número de Reporte de Laboratorio	W4K0232-03	W5B0287-07	W5G0059-04			W4K0232-02	W5B0287-06	W5G0059-05			W4K0232-01	W5B0287-05	W5G0059-03		W4K0265-01	W5B0387-04	W5F0006-07	W4K0265-02	W5B0387-05	W5F0006-08
				LB					LI	В				LB						
				Max	Min				Max	Min				Max Min						
Plata Total	<0.005	<0.005	<0.005	0.116	0.116	<0.005	<0.005	<0.005	ND	ND	<0.005	<0.005	<0.005	ND ND	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Plomo Disuelto	<0.0075	<0.0075	<0.0075	ND	ND	<0.0075	<0.0075	<0.0075	ND	ND	<0.0075	<0.0075	<0.0075	ND ND	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075
Plomo Total	<0.0075	<0.0075	<0.0075	0.014	0.003	<0.0075	<0.0075	<0.0075	0.018	0.003	<0.0075	<0.0075	<0.0075	0.022 0.003	<0.0075	<0.0075	<0.0075	0.0088	<0.0075	<0.0075
Potasio Disuelto	6.32	17.5	12.2	30.7	1.42	2.86	3.55	3.94	51.9	1.06	3.32	3.84	4.17	3.87 1.01	2.9	3.49	4.49	3.05	3.53	4.45
Potasio Total	6.32	17.9	11.9	11.7	1.58	3	3.63	3.8	6.08	1.17	3.4	3.93	4	6.83 1.1	3.38	3.24	4.96	3.31	3.28	4.88
Selenio Disuelto	<0.003	0.0112	0.0031	ND	ND	<0.003	<0.003	<0.003	ND	ND	<0.003	<0.003	<0.003	ND ND	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Selenio Total	<0.003	0.0081	<0.005	ND	ND	<0.003	<0.005	<0.005	ND	ND	<0.003	<0.005	<0.005	ND ND	<0.003	<0.005	<0.005	<0.003	<0.005	<0.005
Silicio Disuelto	43.8	40.2	40.4	27.1	3.3	44.9	40	40.9	22.7	2.33	44.2	39.4	41.1	21.5 2.71	47.3	39.5	46.3	46	38.4	46
Silicio Total	53.5	41.2	39.8	60.3	5.8	61.8	42.3	40.7	37.2	2.33	60.4	42.5	41.2	42.1 5.86	74.1	42.1	74.7	68.9	43.7	77.4
Sodio Disuelto	45.4	218	136	45.8	1.9	7.56	10.1	12.9	12.5	1.92	12.6	15.1	13.3	8.85 1.73	6.64	9.73	8.08	6.94	9.65	8.36
Sodio Total	45.2	217	136	85.1	2	7.68	10.8	12.9	20.8	2.17	12.3	15.5	13.4	17.2 2.09	6.61	8.92	8.64	6.82	9.05	8.78
Talio Disuelto	<0.001	<0.001	<0.001	ND	ND	<0.001	<0.001	<0.001	ND	ND	<0.001	<0.001	<0.001	ND ND	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Talio Total	<0.001	<0.001	<0.001	0.003	ND	<0.001	<0.001	<0.001	0.003	ND	<0.001	<0.001	<0.001	0.003 ND	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Titanio Disuelto	<0.005	<0.005	<0.005	0.046	ND	<0.005	<0.005	<0.005	0.111	ND	<0.005	<0.005	<0.005	0.065 ND	0.0088	<0.005	<0.005	0.0053	<0.005	0.0103
Titanio Total	0.0731	<0.005	<0.005	0.876	ND	0.158	0.012	0.0156	1.62	ND	0.144	0.0397	0.0174	2.34 ND	0.337	0.0118	0.315	0.243	0.0092	0.36
Vanadio Disuelto	<0.005	<0.005	<0.005	ND	ND	<0.005	<0.005	<0.005	0.006	ND	<0.005	<0.005	<0.005	0.006 ND	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Vanadio Total	0.0064	<0.005	0.0051	0.056	ND	0.0082	<0.005	<0.005	0.069	ND	0.0075	<0.005	<0.005	0.087 ND	0.0207	<0.005	0.0127	0.0148	<0.005	0.0138
Zinc Disuelto	<0.01	<0.01	<0.01	0.044	ND	<0.01	<0.01	<0.01	0.027	ND	<0.01	<0.01	<0.01	0.02 ND	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc Total	<0.01	<0.01	<0.01	0.05	ND	0.0116	<0.01	<0.01	0.073	ND	<0.01	<0.01	<0.01	0.079 ND	0.017	<0.01	0.012	0.0129	<0.01	0.015

ND: No detectado

Hidrocarburos Totales: Resultado por debajo del límite de detección de los rangos de diesel, hexanos, y aceites.

 1 **Unidades**: pH: u.e., Conductividad uS/cm, metales y demás parámetros: mg/l, Temperatura: $^{\circ}$ C

²**LB**:: Línea Base Máximos 2005.

Fuente: Gerencia de Ambiente de Mina Marlin-Montana Exploradora de Guatemala, S.A. 2015.

- Equipo de medición de oxígeno en reparación.

Tabla 14: Resultados de calidad de agua subterránea

Estación		PSA3			MW3B			G11	
Trimestre	4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015	4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015	4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015
Fecha de muestreo	11/11/2014	02/14/2015	05/27/2015	11/08/2014	03/29/2015	05/17/2015	11/13/2014	02/28/2015	05/28/2015
Mes	Nov	Feb	May	Nov	Mar	May	Nov	Feb	May
Laboratorio	SVL								
Número de Reporte de Laboratorio	W4K0265-03	W5B0287-03	W5F0006-04	W4K0232-06	W5D0004-01	W5E0385-07	W4K0302-03	W5C0099-01	W5F0006-05
pH del campo	7.33	7.54	7.6	7.43	7.14	7.52	7.23	7.85	7.44
pH – lab	7.76	8.01	7.97	7.88	7.33	8.02	8.05	7.86	7.73
Temp del campo	23.54	28.78	28.91	23.62	25.15	24.32	21.5	21.61	22.57
Conductividad del campo	1360	1157	1275	435.1	185.8	426.2	508.1	380	474.6
Conductividad - lab @ 25°C	1250	1180	1250	402	204	394	451	462	465
Oxígeno Disuelto del campo	6.64	6.53	-	0.08	3.01	0.1	2.49	3.73	-
Alcalinidad Total	257	283	279	221	107	218	240	238	239
Bicarbonato como CaCO3	257	283	279	221	107	218	240	238	239
Carbonato como CaCO3	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hidróxido como CaCO3	<1	<1	<1	<1	<1	<1	<1	<1	<1
Amonio	<0.03	0.043	0.04	0.043	<0.03	<0.03	<0.03	0.039	0.04
Cloruros	40.7	44	46.3	0.63	1	0.6	0.95	0.74	0.79
Fluoruros	0.89	0.854	0.808	<0.1	<0.1	<0.1	0.28	0.241	0.225
Cianuro Total	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cianuro WAD	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Nitrógeno Total	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5
TKN	<0.5	<0.5	<0.5	<0.5	0.82	<0.5	<0.5	<0.5	<0.5
Nitritos/Nitratos como N	0.149	<0.05	<0.05	<0.05	<0.05	0.106	<0.05	<0.05	<0.05
Sulfatos	397	384	391	6.07	3.28	6.52	20.1	20.2	21.7
Sulfuro de hidrógeno	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sólidos Disueltos Totales @180°C	923	902	930	230	204	254	270	309	301
Sólidos Suspendidos Totales	<5	<5	<5	<5	39	7	<5	<5	<5
Sólidos Totales @ 105°C	962	954	970	276	246	246	281	324	305
Hidrocarburos totales	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aluminio Disuelto	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Antimonio Disuelto	0.0122	0.0052	0.00347	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Arsénico Disuelto	0.0282	0.0412	0.044	0.0033	<0.003	<0.003	<0.003	<0.003	<0.003
Bario Disuelto	0.0406	0.0385	0.0369	0.409	0.17	0.429	0.127	0.13	0.13
Berillio Disuelto	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boro Disuelto	0.691	0.639	0.683	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Cadmio Disuelto	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Calcio Disuelto	149	151	154	28.7	23.6	30.6	55.6	54.3	54.2
Cobalto Disuelto	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Cobre Disuelto	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Estación		PSA3			MW3B			G11	
Trimestre	4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015	4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015	4to. Trimestre 2014	1er. Trimestre 2015	2do. Trimestre 2015
Fecha de muestreo	11/11/2014	02/14/2015	05/27/2015	11/08/2014	03/29/2015	05/17/2015	11/13/2014	02/28/2015	05/28/2015
Mes	Nov	Feb	May	Nov	Mar	May	Nov	Feb	May
Laboratorio	SVL								
Número de Reporte de Laboratorio	W4K0265-03	W5B0287-03	W5F0006-04	W4K0232-06	W5D0004-01	W5E0385-07	W4K0302-03	W5C0099-01	W5F0006-05
Cromo Disuelto	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Estroncio Disuelto	2.43	2.38	2.76	0.623	0.171	0.614	0.443	0.481	0.473
Hierro Disuelto	<0.06	0.069	0.198	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06
Litio Disuelto	0.255	0.255	0.257	0.071	0.025	0.062	<0.02	0.027	0.028
Magnesio Disuelto	27.8	25.8	26.3	7.5	3.69	8.17	12.1	11.4	11.3
Manganeso Disuelto	0.0532	0.085	0.0974	0.0204	0.0064	0.0187	0.007	<0.004	<0.004
Mercurio Disuelto	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molibdeno Disuelto	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
Níquel Disuelto	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Plata Disuelta	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Plomo Disuelto	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075
Potasio Disuelto	4.32	3.76	3.64	5.95	5	6.42	6.59	6.82	6.92
Selenio Disuelto	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Silicio Disuelto	41.8	39.1	42.4	28.4	83	26.4	36.7	34.5	36
Sodio Disuelto	103	98.7	97.5	54.2	16.7	46.8	32.3	32.2	30.2
Talio Disuelto	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Titanio Disuelto	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Vanadio Disuelto	<0.005	<0.005	<0.005	<0.005	0.0144	<0.005	<0.005	<0.005	<0.005
Zinc Disuelto	0.168	0.179	0.124	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

ND: No detectado

Hidrocarburos Totales: Resultado por debajo del límite de detección de los rangos de diesel, hexanos, y aceites.

 1 Unidades: pH: u.e., Conductividad uS/cm, metales y demás parámetros: mg/l, Temperatura: $^{\circ}$ C

²**LB**:: Línea Base Máximos 2005.

Fuente: Gerencia de Ambiente de Mina Marlin-Montana Exploradora de Guatemala, S.A. 2015.

- Equipo de medición de oxígeno en reparación.

INFORMACIÓN Y AMPLIACIONES SOLICITADAS POR EL MEM

Resumen de actividades del derecho minero

El resumen de las actividades del derecho minero se presenta con base anual incluyendo los diferentes aspectos y áreas de operación.

Ampliación en la interpretación de resultados

Mina Marlin se ubica en la cuenca del Río Cuilco, misma que desemboca en el Golfo de México con elevaciones desde los 897 a los 3584 msnm, la longitud estimada del cauce es de 141.8 Km. En este cauce se ubican las estaciones SW4, SW5, SW11 y SW12. Las estaciones SW4 y SW5 son estaciones aguas arriba y aguas debajo de la estación SW3 ubicada en el Riachuelo Quivichil que conduce la descarga del proyecto minero.

Los parámetros generalmente tienen variaciones en un rango similar en función de la estacionalidad de la cuenca, los datos de las estaciones son comparables a través del tiempo tomando en consideración las condiciones meteorológicas, especialmente la lluvia debido a que ésta genera escorrentía que los cauces reciben reflejando cambios en la presencia de componentes asociados al suelo, a los cultivos y agroquímicos entre otros; por ejemplo sólidos, hierro, silicio, DQO, aluminio, bario, entre otros.

Es de notar que los resultados reflejan un comportamiento similar aguas arriba y aguas abajo por lo que la descarga del proyecto minero no influye en estos cambios.

En SW4 y en SW11, se ha observado extracción de arena la metodología utilizada puede influir en aumento de sólidos y el arrastre de algunos compuestos en época seca.

El pH de las estaciones varía en un rango similar, a pesar que en la estación SW12 con anterioridad se mostró un aumento paulatino los últimos valores han disminuido, la estación SW12 no tiene relación directa con el proyecto es una estación de referencia. En la estación SW4 y SW5 se muestra un aumento paulatino, el comportamiento se refleja en la estación aguas arriba y la estación SW3 se encuentra en cumplimiento de línea base por lo que este cambio se debe a otras actividades que no están asociadas a la descarga.

La conductividad es un parámetro que refleja las sales disueltas en una muestra de agua, la estación SW3 muestra una conductividad mayor así como presencia de calcio y sodio, estos valores se deben a que el agua utilizada del pozo PSA3 es agua subterránea y de profundidad por lo que tiene mayor cantidad de sales disueltas. En el SW3, en el último trimestre los valores de dichos parámetros disminuyen respecto al trimestre anterior. Éstos generalmente son abundantes en los cuerpos de agua y no representan daño a la salud. Así mismo no están regulados por el IFC ni por el reglamento de aguas residuales acuerdo 236-2006. Cabe resaltar que en el río Cuilco en la estación SW5 hay un leve aumento respecto a la estación SW4 misma que no es significativa.

El amonio y nitrógeno total disminuyó significativamente respecto al trimestre anterior en la estación SW3, éstos parámetro no muestra incidencia sobre el Río Cuilco.

Los cloruros y sólidos disueltos disminuyeron en la estación SW3 respecto al trimestre anterior, los resultados en la estación SW4 y SW5 son similares. Incluso los valores de cloruro son levemente mayores en la estación aguas arriba.

El arsénico total aumentó levemente en la estación SW3, sin influir en la estaciones SW4 y SW5. En todos los cuerpos de agua no hay presencia de grasas y aceites

Los resultados de la descarga están muy por debajo de los valores estándar para el IFC y el acuerdo 236-2006 por lo que está en cumplimiento en los parámetros analizados.

El Río Tzalá, confluye con el Río Cuilco, éste se ubica hacia el sur del parteaguas de la microcuenca del Riachuelo Quivichil, éstas estaciones sufren cambios estacionales puesto no hay descargas asociadas al proyecto minero sobre este cauce. Se observa cambios en el pH con un aumento paulatino en los últimos trimestres el valor no excede la línea base para los valores de campo, supera levemente la línea base los valores de laboratorio mismos que están en un rango aceptable para un cuerpo de agua, se observará en el siguiente muestreo. Los demás parámetros que tienen leves variaciones y no son significativas.

Es importante notar que el año 2015 tiene un comportamiento meteorológico atípico, puesto en junio no se alcanzó el promedio histórico, reflejando esto en el comportamiento de caudales y escorrentías en los cuerpos de agua. Así mismo en el uso de otros productos agroquímicos para los cultivos.

El pozo PSA3 mantiene un comportamiento sin variaciones significativas en los últimos trimestres se observa que la conductividad se mantiene en un rango similar, es en estos resultados donde se refleja la presencia de sodio y calcio así como de algunos metales disueltos que son normales en el agua subterránea.

El pozo MW3B y G11 se ubican aguas abajo de la represa de colas, el comportamiento de la conductividad aumentó respecto al trimestre anterior pero disminuyó respecto al cuarto trimestre 2014, por lo que se considera que se mantiene en los rangos usuales.

En los tres pozos no se muestras diferencias significativas para los demás parámetros, respecto a trimestres anteriores, no se muestra presencia de compuestos asociados a la represa de colas ni otros.

Caudales del pozo PSA3

El caudal promedio del pozo es entre 40 y 60 m³, éste no opera de manera continua está conectado a un tanque de almacenamiento para un consumo promedio mensual durante el trimestre de 12, 391 m³. El agua utilizada en el proceso se recircula desde la represa de colas por medio de bombas Godwin. El agua fresca usualmente se utiliza para preparación de químicos y usos domésticos de oficinas, cocinas y campamentos.

Caudales cuerpos superficiales

Tabla 15. Caudales de estaciones de monitoreo

Estación de monitoreo	Mes de muestreo	m³/s
SW1	Mayo	0.1989
SW1-2	Mayo	0.2049
SW2	Mayo	0.2408
SW3	Junio	0.0885
SW4	Junio	3.954
SW5	Junio	4.1560

Fuente: Departamento de ambiente 2015.

Caudales de descarga disgregados con base mensual

 Tabla 16.
 Caudales de descarga con base mensual

Mes	WTP	SP
Abril	49,273	38,049
Mayo	10,729	142,852
Juno	1,114	89,757

Fuente: Departamento de Procesos y Obra Civil Mina Marlin 2015.

Conclusión

El Monitoreo de Mina Marlin para el Informe de Cumplimiento del 2do. Trimestre 2015, fue realizado según los requerimientos establecidos y no mostró ni se observaron datos fuera de especificación para la calidad de Aire, Ruido y Agua en los alrededores, en cumplimiento con las guías y normativas ambientales especificadas para la Mina Marlin.

Anexos

Anexo 1 Resultados de laboratorio calidad de aire

Anexo 2 Resultados de laboratorio de calidad de agua